Burnside's lemma and Polya enumeration theorem 日付: 11月 18, 2018 リンクを取得 Facebook × Pinterest メール 他のアプリ [cp-algorithms: Burnside's lemma and Polya enumeration theorem](https://cp-algorithms.com/combinatorics/burnside.html) The main usage of Burnside's lemma and Polya's enumeration theorem is counting the number of **equivalence classes** in sets. * **Object**. The equivalence classes that we want to count. * **Representation**. Many representations may correspond to the same object. It can be denoted by a function fff of the latent variables(for example, in the binary tree coloring problem, these variables are tree nodes). * **Invariant permutation**. A permutation of latent variables that only changes the representation, not the object. f1π=f2f_1\pi=f_2f1π=f2. All invariant permutations form a group GGG. * **Fixed point**. A fixed point fff of a permutation π\piπ satisfies fπ≡ff\pi \equiv ffπ≡f. The number of fixed points of a permutation is denoted by I(π)I(\pi)I(π) * **Burnside's lemma**. ∣Classes∣=1∣G∣∑π∈GI(π)|Classes| = \frac{1}{|G|}\sum_{\pi \in G} I(\pi)∣Classes∣=∣G∣1π∈G∑I(π) * **Polya enumeration theorem(special case)**.∣Classes∣=1∣G∣∑π∈GkC(π)|Classes|=\frac{1}{|G|}\sum_{\pi \in G}k^{C(\pi)}∣Classes∣=∣G∣1π∈G∑kC(π) C(π)C(\pi)C(π) is the number of cycles in the permutation π\piπ, kkk is the number of values that each representation element can take. コメント
コメント
コメントを投稿